NORTH AMERICAN PLATE ROTATING ABOUT EULER POLE (GPS DATA)

Directions follow small circles

Rates increase as sine of angular distance from pole

Rotation and angular velocity

Rotation: change in radial position vector.

Theory of infinitesimal rotations: dr = r'-r .

Euler's Fixed Point Theorem:

Euler Polé & Rotation vector

A change in position can be described by rotation about an axis.

Rotation axis goes through the center of the Earth. Rotation axis intersects Earth's surface at the *pole of rotation*. Tectonics on a sphere requires that we use **Spherical Polar Coordinates** and angular velocities

 $(\omega = v/r \text{ and } r = R \sin \delta$ where R is the radius of the Earth).

Tectonics on a sphere requires that we use **Spherical Polar Coordinates** and angular velocities ($\omega = v/r$ and $r = R \sin \delta$ where R is the radius of the Earth).

the magnitude of v: $v = \omega R \sin \delta$

Spherical Polar Coordinates and angular velocities

SPC $R \equiv |\mathbf{r}| = 6371 \text{ km}$ $\delta = 90 - \lambda$ $\delta \equiv \text{co-latitude}$ $\lambda \equiv \text{latitude}$ $\phi \equiv \text{longitude}$ $+E (0-180^{\circ})$ $- W (180-360^{\circ})$

Angular Velocity Vector

The rotation axis intersects Earth's surface at the pole of rotation.

Angular Velocity Vector

The rotation axis intersects Earth's surface at the pole of rotation.

Sign convention for **positive pole** and **negative pole**.

Right hand rule -> ccw positive.

Components of the angular velocity vector $\,\omega$

•Note: they are not the same as in Cartesian coords.

The three components are 1) magnitude, 2) pole co-lat, 3) pole longitude.

Angular Velocity Vector

Sign convention for **positive pole** and **negative pole**. **Right hand rule**. **ccw positive**.

Ideal Plate Tectonics

Transform faults are along **small circles** to pole of rotation Ridge segments are parallel to **great circles**.

the magnitude of v: $v = \omega R \sin \Delta$

Example: Angular Velocity and Linear Velocity •Find the linear velocity at State College due to rotation around the North Pole

the magnitude of v: $v = \omega R \sin \delta$

 $|\omega| = 2\pi \text{ rad/day (rotation rate)}$ R = 6371 km $\delta = 90 - 40.8 = 49.2^{\circ}$ v = 2 π /day 6371 km sin(49.2°) = 40,030 km * sin(49.2°) = 30,303 km/d = 0.351 km/s = 758 m/hr Example:

Find distances on a sphere; use lat, long, and δ (note that δ is sometimes written as Δ)

In this example, the locations are along the same line of longitude. Therefore, δ is just the latitude of Stockholm plus the latitude of Cape Town 90 Gening Arouna on a spoere

Example: More general (harder) case of finding distances on a sphere; use lat long and Δ

What if the two locations are not on the same line of longitude?

What if we needed the distance from Cape Town to Perth, Australia?

Example: More general (harder) case of finding distances on a sphere; use lat long and Δ

L

NP А В р X а these arcs are segments of great circles

Use spherical trig identity
Cos a = cos b cos c + sin b sin c cos A
In our notation:
Cos
$$\Delta$$
 = cos δ_x cos δ_p + sin δ_x sin δ_p cos (ϕ_p - ϕ_x)

Use Spherical Geometry

Also: sin a / sin A = sin c / sin C $C = \sin^{-1} [\sin \delta_p \sin (\phi_p - \phi_x) / \sin \alpha]$ But be aware of sign ambiguity for sin⁻¹

 $A = \phi_p - \phi_x$, $b = \delta_x$, $c = \delta_p$, $a = \Delta$

Velocity of the North American Plate relative to the Pacific Plate is given by the rotation pole at: 48.7° N 78.2° W and angular velocity 7.8e-7 deg/year A point on the Pacific plate near Parkfield California, which is at 35.9° N 120.5° W, is moving at 47.8 mm/yr relative to the rest of North America.

To calculate the velocity at Parkfield CA, we need 1) the angular distance between Parkfield and the rotation pole. and 2) the relation $V = \omega R \sin \Delta$

We can use this equation:

$$Cos \Delta = cos\theta_{x} cos\theta_{p} + sin\theta_{x} sin\theta_{p} cos (\phi_{p} - \phi_{x})$$

We have $\theta x = 90-35.9 = 54.1$, $\theta p = 90-48.7 = 41.3$ and $\phi p - \phi x = (-78.2) - (-120.5) = 42.3$

Plugging in gives $\Delta = 33.28^{\circ}$

Then we can get V as: 7.8e-7 * $(\pi/180)$ * 6371e3 * sin(33.28) = 0.0476 m/yr