NORTH AMERICAN PLATE ROTATING ABOUT EULER POLE (GPS DATA)

Directions follow small circles

Rates increase as sine of angular distance from pole

Rotation and angular velocity

Rotation:

change in radial position vector.

Theory of infinitesimal rotations:
$d r=r^{\prime}-r$.

Euler's Fixed Point Theorem:

A change in position can be described by rotation about an axis.

Rotation axis goes through the center of the Earth.
Rotation axis intersects Earth's surface at the pole of rotation.

Tectonics on a sphere requires that we use Spherical Polar Coordinates and angular velocities

Tectonics on a sphere requires that we use Spherical Polar
Coordinates and angular velocities ($\omega=v / r$ and $r=R \sin \delta$ where R is the radius of the Earth).

the magnitude of v :
$v=\omega R \sin \delta$

Spherical Polar Coordinates and angular velocities

SPC

The prime meridian
$\mathrm{R} \equiv|\mathbf{r}|=6371 \mathrm{~km}$ $\delta=90-\lambda$
$\delta \equiv$ co-latitude
$\lambda \equiv$ latitude
$\phi \equiv$ longitude
$+\mathrm{E}\left(0-180^{\circ}\right)$

- W (180-360 $)$

Cartesian from SPC

(components of the r vector)
r

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{x}}=\mathrm{R} \sin \delta \cos \phi \\
& \mathbf{r}_{\mathrm{y}}=\mathrm{R} \sin \delta \sin \phi \\
& \mathbf{r}_{\mathrm{z}}=\mathrm{R} \cos \delta
\end{aligned}
$$

Angular Velocity Vector

The rotation axis intersects Earth's surface at the pole of rotation.

Components of the angular velocity vector ω
The three components are

1) magnitude,
2) pole co-lat,
3) pole longitude.

Angular Velocity Vector

The rotation axis intersects Earth's surface at the pole of rotation.

Sign convention for positive pole and negative pole.
Right hand rule -> ccw positive.
Components of the angular velocity vector ω

- Note: they are not the same as in Cartesian coords.

The three components are 1) magnitude, 2) pole co-lat, 3) pole longitude.

Angular Velocity Vector

Sign convention for positive pole and negative pole. Right hand rule. ccw positive.

Ideal Plate Tectonics the magnitude of $v: \quad v=\omega R \sin \Delta$

Transform faults are along small circles to pole of rotation Ridge segments are parallel to great circles.

Δ is the length, in degrees, of these lines

Review: we know that
${ }_{A} \omega_{B}={ }_{-B} \omega_{A} \cdot$ If $_{A} \omega_{B}$ is
$\left[1.5^{\circ} / \mathrm{Ma}, 40.8^{\circ}\right.$,
282.1°. What is ${ }_{\mathrm{B}} \omega_{\mathrm{A}}$?

Example: Angular Velocity and Linear Velocity

- Find the linear velocity at State College due to rotation around the North Pole
the magnitude of $v: \quad v=\omega R \sin \delta$

$$
\begin{aligned}
& |\omega|=2 \pi \mathrm{rad} / \mathrm{day}(\text { rotation rate }) \\
& \mathrm{R}=6371 \mathrm{~km} \\
& \delta=90-40.8=49.2^{\circ} \\
& \begin{aligned}
\mathrm{v} & =2 \pi / \text { day } 6371 \mathrm{~km} \sin \left(49.2^{\circ}\right) \\
& =40,030 \mathrm{~km} * \sin \left(49.2^{\circ}\right) \\
& =30,303 \mathrm{~km} / \mathrm{d}=0.351 \mathrm{~km} / \mathrm{s}=758 \mathrm{~m} / \mathrm{hr}
\end{aligned}
\end{aligned}
$$

Example:

Find distances on a sphere; use lat, long, and δ
(note that δ is sometimes written as Δ)

In this example, the locations are along the same line of longitude.
Therefore, δ is just
the latitude of
Stockholm plus the
latitude of Cape Town

Example:

More general (harder) case of finding distances on a sphere; use lat long and Δ

What if the two locations are not on the same line of longitude?

What if we needed the distance from Cape Town to Perth, Australia?

Example:
More general (harder) case of

Use Spherical Geometry

 finding distances on a sphere; use lat long and $\Delta$$$
A=\phi_{p}-\phi_{x}, \quad b=\delta_{x}, c=\delta_{p}, \quad a=\Delta
$$

these arcs are
segments of great circles

Use spherical trig identity
$\cos a=\cos b \cos c+\sin b \sin c \cos A$
In our notation:
$\cos \Delta=\cos \delta_{x} \cos \delta_{p}+\sin \delta_{x} \sin \delta_{p} \cos \left(\phi_{p}-\phi_{x}\right)$
Also:
$\sin a / \sin A=\sin c / \sin C$
$C=\sin ^{-1}\left[\sin \delta_{p} \sin \left(\phi_{p}-\phi_{x}\right) / \sin a\right]$
But be aware of sign ambiguity for $\sin ^{-1}$

Velocity of the North American Plate relative to the Pacific

these arcs are circles Plate is given by the rotation pole at: $48.7^{\circ} \mathrm{N} 78.2^{\circ} \mathrm{W}$ and angular velocity $7.8 \mathrm{e}-7 \mathrm{deg} / \mathrm{year}$
A point on the Pacific plate near Parkfield California, which is at $35.9^{\circ} \mathrm{N} 120.5^{\circ} \mathrm{W}$, is moving at $47.8 \mathrm{~mm} / \mathrm{yr}$ relative to the rest of North America.

To calculate the velocity at Parkfield CA, we need

1) the angular distance between Parkfield and the rotation pole. and 2) the relation $\mathrm{V}=\omega \mathrm{R} \sin \Delta$

We can use this equation:

$$
\cos \Delta=\cos \theta_{x} \cos \theta_{p}+\sin \theta_{x} \sin \theta_{p} \cos \left(\phi_{p}-\phi_{x}\right)
$$

We have $\theta \mathrm{x}=90-35.9=54.1, \theta \mathrm{p}=90-48.7=41.3$ and $\phi \mathrm{p}-\phi \mathrm{x}=(-78.2)-(-120.5)=42.3$
Plugging in gives $\Delta=33.28^{\circ}$
Then we can get V as: $7.8 \mathrm{e}-7 *(\pi / 180) * 6371 \mathrm{e} 3 * \sin (33.28)=\mathbf{0 . 0 4 7 6} \mathbf{~ m} / \mathbf{y r}$

