# This will get executed each time the exercise gets initialized.
import pandas as pd
d = {'HOME ID': [10460, 10787, 11055, 14870, 12200, 12228, 10934, 10731, 13623, 12524],
'DIVISION': pd.Series(['Pacific', 'East North Central', 'Mountain North', 'Pacific', 'Mountain South', 'South Atlantic', 'East South Central', 'Middle Atlantic', 'East North Central', 'Pacific']),
'KWH': pd.Series([3491.9, 6195.942, 6976.0, 10979.658, 19472.628, 23645.16, 19123.754, 3982.231, 9457.71, 15199.859])}
df = pd.DataFrame(data=d)
d2 = {'HOME ID': [13623,
11055,
10460,
12200,
12524,
10332,
12106,
11718,
14500,
13193],
'CLIMATE': ['Cold/Very Cold',
'Cold/Very Cold',
'Marine',
'Hot-Dry/Mixed-Dry',
'Marine',
'Hot-Dry/Mixed-Dry',
'Cold/Very Cold',
'Mixed-Humid',
'Marine',
'Marine'],
'TOTAL SQUARE FEET': [1881,
2455,
800,
3800,
1110,
1630,
5184,
1812,
2195,
847]}
df2 = pd.DataFrame(data=d2)
# First, view the DataFrames
print(df)
print(df2)
# Perform 'inner' merge
df3 = df.merge(df2, how = 'inner', on = 'HOME ID')
print(df3)