# This will get executed each time the exercise gets initialized. import pandas as pd d = {'HOME ID': [10460, 10787, 11055, 14870, 12200, 12228, 10934, 10731, 13623, 12524], 'DIVISION': pd.Series(['Pacific', 'East North Central', 'Mountain North', 'Pacific', 'Mountain South', 'South Atlantic', 'East South Central', 'Middle Atlantic', 'East North Central', 'Pacific']), 'KWH': pd.Series([3491.9, 6195.942, 6976.0, 10979.658, 19472.628, 23645.16, 19123.754, 3982.231, 9457.71, 15199.859])} df = pd.DataFrame(data=d) d2 = {'HOME ID': [13623, 11055, 10460, 12200, 12524, 10332, 12106, 11718, 14500, 13193], 'CLIMATE': ['Cold/Very Cold', 'Cold/Very Cold', 'Marine', 'Hot-Dry/Mixed-Dry', 'Marine', 'Hot-Dry/Mixed-Dry', 'Cold/Very Cold', 'Mixed-Humid', 'Marine', 'Marine'], 'TOTAL SQUARE FEET': [1881, 2455, 800, 3800, 1110, 1630, 5184, 1812, 2195, 847]} df2 = pd.DataFrame(data=d2) # First, view the DataFrames print(df) print(df2) # Perform 'inner' merge df3 = df.merge(df2, how = 'inner', on = 'HOME ID') print(df3)