# libraries
import numpy as np
import pandas as pd
import scipy.stats as stats
# draw some cards
x = np.array([...])
# calculate the p-value
n = len(x)
N = 1000
counts = np.random.binomial(n,0.5,N)
phat = counts/n
dataphat = len(x[x == 'R'])/n
phatdf = pd.DataFrame(phat, columns = ['phat'])
print('p-value: ', ...)
# libraries
import numpy as np
import pandas as pd
import scipy.stats as stats
# draw some cards
x = np.array(['R','R','R','R','R','R'])
# calculate the p-value
n = len(x)
N = 1000
counts = np.random.binomial(n,0.5,N)
phat = counts/n
dataphat = len(x[x == 'R'])/n
phatdf = pd.DataFrame(phat, columns = ['phat'])
print('p-value: ', len(phatdf[phatdf['phat'] >= dataphat])/N)