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 GPS Modernization 

 

The configuration of the GPS Space Segment is well-known. A minimum of 24 GPS 

satellites ensure 24-hour worldwide coverage.  But today there are more than that 

minimum on orbit.  There are a few spares on hand in space.  The redundancy is prudent.  

GPS, put in place with amazing speed considering the technological hurdles, is now 

critical to all sorts of positioning, navigation and timing around the world.  It’s that very 

criticality that requires the GPS modernization.  It is certainly necessary.  The oldest 

satellites in the current constellation were launched in 1989.  Imagine using a personal 

computer of that vintage today.  Therefore, it is not surprising that there are plans in place 

to alter the system substantially. What might be unexpected is many of those plans will 

be implemented entirely outside of the GPS system itself.  This chapter is about some of 

those changes. 

 

Block I, Block II and Block IIR Satellites 

Currently, there are three blocks of GPS satellites in orbit around the Earth.  They include 

none of the first launched GPS satellites, which were known as Block I (1978-1985).  

None of these are functional today.  The oldest of the satellites operating on orbit today 

are those in the original Block II (1989-1997).  All of the Block II satellites built by 

Rockwell have been launched.  Remarkably, a majority of them are still healthy.   They 

were expected to have a Mean Mission Duration  (MMD) of 10.6 yrs that has obviously 
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been exceeded in most cases.  But the Block II satellites do wear out and as they do, the 

next generation goes up.  These are the Block IIR satellites, R is for replenishment.   

 

There are some significant differences between the Block II and the Block IIR satellites.  

Block IIR satellites can determine their own position.  They have programmable 

processors on-board to do their own fixes in flight. The Block IIR satellites can be moved 

into a new orbit with a 60-day advanced notice.   In short they have more autonomy.  

They are also more radiation hardened then their predecessors.  And despite all that they 

actually cost about a third less than the original Block II satellites did.  Eventually there 

will be approximately 21 Block IIR satellites launched.  

 

However, there is one significant way in which the Block II and the Block IIR satellites 

are very much the same.  They both broadcast the same fundamental GPS signals that 

have been in place for a long time.  Their frequencies are centered on L1 and L2.  The 

Coarse/Acquisition or C/A-code is carried on L1 and has a chipping rate of 1.023 million 

chips per second.  It has a code length of 1023 chips over the course of a millisecond 

before it repeats itself.  There are actually 32 different code sequences that can be used in 

the C/A code, more than enough for each satellite. The Precise code or P-code on L1 and 

L2 has a chipping rate that is ten times faster at 10.23 million chips per second.  It has a 

code length of about a week, approximately 6 trillion chips, before it repeats.  If this code 

is encrypted it is known as the P(Y) code, or simply the Y-code 
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Power Spectral Density Diagrams. A convenient way to visualize these signals is a 

diagram of the power spectral density function (PSD).  It is basically an expression of 

Watts per Hertz as a function of frequency.  The actual definition of PSD is the Fourier 

transform of the autocorrelation function.  In GPS the diagram is usually represented with 

the frequency in MHz on the horizontal axis and the density, the power, represented on 

the perpendicular axes in decibels relative to one Hertz per Watt or dBW.   

 

Perhaps a bit of explanation is in order for dbW.  The decibel unit was really begun in 

Bell Labs as a way to express power loss on telephone lines.  It is logarithmic function, 

but can be thought of as a percentage.  In other words, a change in power of one decibel 

would be an increase or a decrease of 27 percent.  100 percent would be a change of 3 

decibels.  Therefore, these graphics show the increase or decrease, in decibels, of power, 

in Watts with respect to frequency in Hertz.  Let’s start with a couple of PSD diagrams of 

the well-known codes on L1 and L2. 

  

 

L1 Signal 
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Figure 10.1 

For example, in Figure 10.1 one can see the C/A code on the L1 signal, centered on the 

frequency 1575.42 MHz and spread over a bandwidth that is approximately 20.46 MHz, 

10.23 MHz on each side of the center frequency.   The P(Y) code is in quadrature that is 

90 degrees from the C/A code.  In both cases the majority of the power is close to the 

center frequency. 

 

 

L2 Signal 

Figure 10.2 

In Figure 10.2 the L2 signal diagram is centered on 1227.60 MHz .  As you can see it is 

similar to the L1 diagram except for the absence of the C/A code which is, of course, not 

carried on the L2 frequency.  As well-known as these are this state of affairs is changing.   

 

 

 

New Signals 
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An important aspect of GPS modernization is the advent of some new and different 

signals that are augmenting the old reliable codes.  In GPS a dramatic step was taken in 

this direction on September 21, 2005 when the first Block IIR-M satellite was launched.   

IIR-M?  What is that? 

 

The M Code. Actually the M stands for modernized, but it is interesting to note that part 

of that modernization also includes a new M-code.  Eight to twelve of these 

replenishment satellites are going to be modified to broadcast a new military code, the M-

code.  This code will be carried on both L1 and L2 and will probably replace the P(Y) 

code eventually and  has the advantage of allowing the DoD to increase the power of the 

code to prevent jamming.   There was consideration given to raising the power of the 

P(Y) code to accomplish the same end, but that strategy was discarded when it was 

shown to interfere with the C/A code. 

 

 

(Steve Lazar, Crosslink [Summer 2002], AeroSpace Corporation) 

Figure 10.3 
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The M-code was designed to share the same bands with existing signals, on both L1 and 

L2, and still be separate from them. See those two peaks in the M-code in Figure 10.3?  

They represent a split-spectrum signal about the carrier.  Among other things this allows 

minimum overlap with the maximum power densities of the P(Y) code and the C/A code, 

which occur near the center frequency.   That is because the actual modulation of the M-

code is done differently.  It is accomplished with binary offset carrier (BOC) modulation 

which differs from the binary phase shift key (BPSK) used with the legacy C/A and P(Y) 

signals.  An important characteristic of BOC modulation is the M-code has its greatest 

power density at the edges that is at the nulls, of the L1.  This architecture both simplifies 

implementation at the satellites and receivers and also mitigates interference with the 

existing codes. Suffice it to say that this aspect and others of the BOC modulation 

strategy offer even better spectral separation between the M-code and the older legacy 

signals. 

Perhaps it would also be useful here to mention the notation used to describe the 

particular implementations of the Binary Offset Carrier.  It is characteristic for it to be 

written BOC(α,β).  Here the α indicates the frequency of the square wave modulation of 

the carrier, also know as the sub-carrier frequency factor.  The β describes the frequency 

of the pseudo-random noise modulation, also known as the spreading code factor.  In the 

case of the M-code the notation is BOC(10,5) describes the modulation of the signal.  

Both here are multiples of 1.023 MHz. In other words their actual values are α = 10 x 

1.023 MHz = 10.23 MHz and β = 5 x 1.023 MHz = 5.115 MHz  (Betz). 
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The M-code is tracked by direct acquisition.  This means that as mentioned in Chapter 1 

the receiver correlates the signal coming in from the satellite with a replica of the code 

that it has generated itself. 

 L2C. A new military code on L1 and L2 may not be terribly exciting to civilian users, 

but these IIR-M satellites have something else going for them.  They will broadcast a new 

civilian code.  This is a code that was first announced back in March of 1998.  It will be 

on L2 and will be known as L2C.  The “C” is for civil.    

We have been using the L2 carrier since the beginning of GPS of course, but now there 

will be two new codes broadcast on the carrier, L2, that previously only carried one  

military signal exclusively, the P(Y) code.  Now L2 will carry a new military signal, the 

M-code, and a new civil signal as well, L2C.    

 

 

 
 
 

(Steve Lazar, Crosslink [Summer 2002], AeroSpace Corporation) 

Figure 10.4 
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It is important to note that L2C is not merely a copy of the C/A-code, even though that 

was the initial idea for the new civil code.  The original plan was that it would be a 

replication of the venerable C/A code, but carried on L2 instead of L1.  This concept 

changed when Colonel Douglas L. Loverro, Program Director for the GPS Joint Program 

Office (JPO) asked if perhaps it was time for some improvement of C/A.  The answer 

was that yes, indeed, there was.  It is somewhat susceptible to both waveform distortion 

and narrow-band interference and its cross-correlation properties are marginal at best.  So   

the new code on L2, known as L2 civil, or L2C was announced.  

 

CM and CL. L2C will be a bit more sophisticated that C/A. L2C is actually composed of 

two codes, L2CM and L2CL.  The CM designation stands for the civil-moderate length 

code.  This signal carries data.  The message that it carries is an improved Navigation 

code.  You may recall that the legacy Navigation code was mentioned in Chapter 1. It 

also known by the acronym NAV, and is broadcast at 50 bps.  The new Navigation 

message is known by the acronym CNAV.  It is broadcast at 25 bps.  Like the original 

NAV message it has 300 bit subframes, but given the lower broadcast rate CNAV takes 

12 seconds to transmit each of its subframes whereas NAV requires only 6 seconds. 

Nevertheless because CNAV is a bit more flexible and compact than the original NAV it 

has the very desirable effect of allowing a receiver to get to its first fix on a satellite much 

faster than before. 

  

There is also a very interesting aspect to the data broadcast on CM known as Forward 

Error Correction, FEC.  An illustration of this technique is to imagine that every 
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individual piece of data is sent to the receiver twice.  If the receiver knows the details of 

the protocol to which the data ought to conform it can compare each of the two instances 

it has received to that protocol.  If they both conform, there is no problem.  If one does 

and one does not, the piece of data that conforms to the protocol is accepted and the other 

is rejected.  If neither conforms then both are rejected.  Using FEC allows the receiver to 

correct transmission errors itself, on the fly, good idea. The CL for civil-long on the other 

hand is a pilot signal and it carries no message. They utilize the same modulation scheme, 

binary phase shift key (BPSK), as the legacy signals 

 

But wait a minute, how can you do that?  How can you have two codes in one?  L2C 

achieves this by multiplexing.  Since the two codes have different lengths L2C alternates 

between chips of the CM code and chips of the CL code. It’s called chip-by-chip time 

multiplexing, sounds like what I do when I watch a football game. So even though the 

actual chipping rate is 511.5 KHz, half the chipping rate of the C/A code, with the time 

multiplexing it still works out that taken together L2C ends up having the same overall 

chip rate as L1 C/A code, 1.023 MHz .  

 

The CM code, the moderate length code goes through 10,230 chips before it repeats.  It 

does that every 20 milliseconds.  But the CL code, the long code repeats after 767,250 

chips every 1.5 seconds and that length gives you very good cross-correlation protection.  

In fact, both are a longer than the C/A code and present a subsequent improvement in 

auto-correlation, as well as cross-correlation.  This is because longer the code the easier it 

is to keep the desired signals separate from the background.  In practice this means these 
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signals can be acquired with more certainty by a receiver which can maintain lock on 

them more surely in marginal situations where the sky is obstructed.  

 

Phase-Locked Loop. It is also important to note that L2C overall is approximately 2.3 dB 

weaker than is C/A on L1. Surprisingly that is not a disadvantage due to the structure of 

the L2C signal.  The receiver can track the long data-less CL with a phase-locked loop 

instead of a squaring Costas loop that is necessary to maintain lock on CM, C/A and 

P(Y).  This allows for improved tracking from what is, in fact, a weaker signal and a 

subsequent improvement in protection against continuous wave interference.  As a way to 

illustrate how this would work in practice, here is one normal sequence by which a 

receiver would lock onto L2C.  First there would be acquisition of the CM code with a 

frequency locked or Costas loop, next there would be testing of the 75 possible phases of 

CL and finally acquisition of CL.  The CL as mentioned can be then tracked with a basic 

phase-locked loop.  Using this strategy, even though L2C is weaker than C/A there is 

actually an improvement in the threshold of nearly 6 dB by tracking the CL with the 

phase-locked loop.  

 

Practical Advantages. OK. Great so what does all that mean in English? It means that 

L2C has better tolerance to interference.  It also means increased stability.  It means 

improved tracking in obstructed areas like woods, near buildings and urban canyons   

And it means fewer cycle slips. 

And there are more solid practical advantages to the introduction of L2C.  Before May 2, 

2000 with Selective Availability on, a little handheld code-based receiver could get you 
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within 30 to 100 meters of your true position.  When SA was turned off that was whittled 

down to 15 to 20 meters or so.  But with just one civilian code C/A on L1 there was no 

way to remove the second largest source of error in that position, the ionospheric delay. 

But now with two civilian signals, one on L1 (C/A) and one on L2 (L2C) it becomes 

possible to effectively model the ionosphere using code phase.  In other words, it seems 

to me that it may become possible for an autonomous code-phase receiver to achieve 

positions with a 5-10m positional accuracy.  And there are more developments coming.  

Developments that just might increase that accuracy to a sub-meter range. 

So, even if it is the carrier-phase that ultimately delivers the wonderful positional 

accuracy we all depend on, the codes gets us in the game and keep us out of trouble every 

time we turn on the receiver.  The codes have helped us to lock on to the first satellite in a 

session and allowed us to get the advantage of cross-correlation techniques almost since 

the beginning of GPS. In other words, our receivers have been combining pseudorange 

and carrier phase observables in innovative ways for some time now to measure the 

ionospheric delay, detect multipath, do widelaning, etc.   But those techniques can be 

improved, because while the current methods work, the results and be noisy and not quite 

as stable as they might be, especially over long baselines.  It will be cleaner to get the 

signal directly once there are two clear civilian codes, one on each carrier.   It may also 

help reduce the complexity of the chipsets inside our receivers, and might just reduce 

their cost as well.   

 

Along that line it is worthwhile to recall that the L2C has an overall chip rate of 1.023 

MHz, just like L1 C/A. Such a slow chip rate can seem to be a drawback until you 
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consider that that rate affects the GPS chipset power consumption. In general, the slower 

the rate the longer the battery life and the improvement in receiver battery life could be 

very helpful.  And not only that, the slower the chip rate, the smaller the chipset.  That 

could mean more miniaturization of receiver components.   

 

L2C is clearly going to be a boon to the GPS consumer market, but it also holds promise 

for surveyors.  Nevertheless, there are a few obstacles to full utilization of the L2C signal.   

As mentioned earlier the first Block IIR-M, namely SVN53/PRN17, was launched on 

September 21, 2005.  It will be some time before the constellation of Block IIR-M 

necessary to provide L2C at an operational level are up and functioning.  Additionally 

aviation authorities do not support L2C.  It is not in an Aeronautical Radionavigation 

Service, ARNS, protected band.  It happens that L2 itself occupies a radiolocation band 

that includes ground-based radars.   

 

L5 

 

The L5 Carrier 

Figure 10.5 
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Ok, L2C is fine, but what about the new carrier everybody has been talking about, L5?  It 

will be centered on 1176.45 MHz, 115 times the fundamental clock rate.  As you see 

from Figure 10.5 the basic structure of L5 looks similar to that of L1.  There are two 

codes on this carrier in quadrature to each other.  They have separate pseudorandom 

noise (PRN) codes two codes per satellite, which are modulated using Quad Phase Shift 

Key (QPSK).  However, borrowing a page from the newer developments the in-phase (I) 

signal carries a data message and the other; the quadraphase signal (Q) is data-less.  Both 

have equal power.  The data that is carried on L5 is a compact flexible message similar to 

that carried by L2C CM. L5 will also utilize time multiplexing in broadcasting its two 

codes as does L2C in broadcasting CM and CL. 

 

Unlike L2C, L5 will have the benefits of its place in a band designated by the 

International Telecommunication Union for the Aeronautical Radionavigation Navigation 

Services (ARNS).    Therefore, it will not be prone to interference with ground based 

navigation aids and will be available for aviation applications. It is also quite helpful that 

no other GPS signal occupies this band.  However, L5 will share space one of the signals, 

E5a-I from an entirely separate satellite system, GALILEO, a very good idea, more about 

that later. 

 

As mentioned, L5 will have one signal modulated with data and one without.  And since 

L5 does not carry military signals, it achieves the power split by using two long equal-

length codes in phase quadrature on each satellite.  Both have a 10.23 MHz chipping rate, 

the same as the fundamental clock rate.  It is worth noting that this is the same rate that 
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has been available on the P(Y) code from the beginning of the system.  However, as you 

know the P(Y) code is unavailable for civilian use.  So this will be the fastest chipping 

rate available in a civilian code, it will have the same overall length as CM on L2C and 

L1C, 10,230 chips.   But L5 will have the only civilian codes that are both ten times 

longer and ten times faster than the C/A code so the risk of interference is very low and, 

good news, the data-less signal will be much easier to acquire in unfavorable SNR 

conditions. 

 

The fast chipping rate is also good news.  As mentioned in Chapter 1 a rule of thumb is 

the maximum resolution available in a pseudorange is about 1 percent of the chipping 

rate of the code used.  The faster the chipping rate the better the resolution, it also 

improves multipath protection.  L5 will also have higher power than L1, about 4 times 

more power.  The increase power is also good news because the legacy signals from GPS 

satellites are weak.  L5 will also have a wide bandwidth, about 20 MHz.  L5 will also 

incorporate Forward Error Correction, FEC.  

 

The Block IIF Satellites L5 will be first introduced on the fourth generation GPS 

satellites, Block IIF, the F is for follow-on.   These satellites have a somewhat longer 

expected lifetime of 12-15 years with faster processors and more memory on-board.   

But we are going to have to be a little patient.  The IIR and IIR-M satellites are in line in 

front of the IIF satellites.  The dozen or so IIR’s will be launched, orbit and reach the end 

of their functional lives before L5 will be on all the satellites.  And the satellites already 

in orbit have performed well beyond their design life.    
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As a matter of fact that development is somewhat responsible for the delay in 

implementing GPS III.  GPS III is the effort to take a new look at the entire GPS 

architecture to ensure the best service for the next 30 years.  We may have to wait a while 

before L5 and the L2C on L2 are fully operational. 

 

It is unfortunate that L5 cannot be built into the IIR’s, the satellites that are going up now.    

 

The first six Block IIF satellites are expected to have a Mean Mission Duration (MMD) 

of 9.9 yrs.  Block IIF will have all the codes discussed earlier, including L2C on L2 and it 

will broadcast the new L5 carrier.   L5 will not cause any interference to existing systems 

nor require their modification.    
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Summary of C/A, L2C and L5 

 

 

 
GPS modernization is no longer a future development, it is underway.   New spacecraft 

with better electronics, better navigation messages, newer and better clocks are just part 

of the story.  Beginning with the launch of the first IIR-M satellite new civil signals began 

to appear, starting with L2C.  It will be followed by others, including L5.   

  

These signals tend to have longer codes, faster chipping rates and more power than the 

C/A and P(Y) codes have.  In practical terms these developments lead to faster first 

acquisition, better separation between codes, reduced multipath and better cross-  

correlation properties. 
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New Signal Availability 

Figure 10.6 

Table 10.7 provides a general outline of all of the signals that are or will be available on 

the upcoming satellite blocks.   

 

  

 

(Richard Fontana, Wai Cheung and Tom Stansell, “ The Modernized L2 Civil Signal”) 

Table 10.1 
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Table 10.1 shows some of the general features of the three civil signals discussed above 

that will soon join the venerable L1-C/A.  The table includes L2C and two signals on L5.  

You can see the center frequency of each, the length of the code or codes, the overall 

code clock rate, and whether the signal consists of one bi-phase component or two 

components in phase quadrature as mentioned on L5.  The bit rate of the data message is 

shown, as mentioned L2C has the slower 25 bps data rate.    

 
 

(Richard Fontana, Wai Cheung and Tom Stansell, “ The Modernized L2 Civil Signal”) 

 
Table 10.2 

 

In Table 10.2 there is an indication in the second column, headed Fully Available, of the 

year of signal parity with the long established legacy civil signal C/A on L1.  Stated 

another way it is an estimate of the year when there will be about as many satellites with 

the new signal as there are with L1 C/A today. Given the current projected launch 

schedules it looks like the three new civil signals: L1-C/A, L2-L2C, and the in-phase and 

quadraphase signals on L5 will attain initial operational capability (IOC) around 2010 or 

so, and full operational capability (FOC) by about 2015.  These years are, of course, 

impossible to predict with accuracy. Aviation, in particular, is looking forward to L5 for 

its promise of precision approach capability. 



 19

  
 
The third column, headed Ionospheric Error Ratio, shows one effect of the different 

frequencies. As you know ionospheric delay is inversely proportional to frequency of the 

signal squared. So it is L2’s error is 65% larger than at L1, and L5 is the worst of all at 

79% larger than L1.  L1 exhibits the least delay as it has the highest frequency of the 

three. 

  

The fourth column, headed Correlation Protection, shows that characteristic for each 

signal.  Where a receiver collects some satellite signals that are quite strong and others 

are weak, such as inside buildings, yes inside buildings, and places where the sky is 

obstructed correlation protection is vital. The slow chipping rate, short code length and 

low power of L1 C/A means it has the lowest correlation protection of the three.  That 

means that a strong signal from one satellite can cross correlate with the codes a receiver 

uses to track other satellites.  In other words the strong signal will actually block 

collection of the weak signals. To avoid this the receiver is forced to test every single 

signal so to avoid incorrectly tracking the strong signal it does not want instead of a weak 

signal that it does.  As you can see the problem is very much reduced with L2.  It has a 

longer code length and higher power than L1.  It is also much reduced with L5 as 

compared to L1.  L5 has a longer code length, much higher power and a much faster 

chipping rate than L1.  In short, both of the civilian codes on L2 and L5 have much better 

cross correlation protection and better narrowband interference protection as well. 

 
The fifth, headed Relative Data Recovery Threshold (dB) and sixth column, headed 

Relative Carrier Tracking Threshold (dB) give the bottom line for data recovery and for 
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threshold signal tracking. L2 is better than L1 C/A but not as good as L5, due in part to 

the much times more powerful signal from L5 as compared to L1 and L2.  

  

Another Civil Signal - L1C 

 

As the result of an agreement reached between the US and the EU in June of 2004 yet 

another civil signal is in the beginning stages of development.  Part of that deal involved 

the creation of an interoperable GPS/GALILEO signal on L1.  This signal, known as L1C 

and will be only one of two common interoperable signals shared by both GPS and 

GALILEO’s L1 Open Service signal.  Work is also underway to allow L1C to be 

interoperable with QZSS, the Japanese Quasi-Zenith Satellite System, as well.  These 

developments open extraordinary possibilities of improved accuracy and efficiency when 

one considers there may eventually be a combined constellation of 50 or more satellites 

all broadcasting this same civilian signal. All this is made possible by the fact that each of 

these different satellite systems utilizes carrier frequencies centered on the L1, 1575.42 

MHz frequency. 

 

While the details of L1C’s design are somewhat provisional it is intended to provide a 

performance improvement over the C/A code and will have some similarities with L2C.  

L1C will have double the power of the C/A signal and a code of the same length as CM 

on L2C 10,230 chips.  Like L2C it will have a pilot signal that does not carry a message, 

and will also have a one signal with a data message with exactly the same code length on 
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both components.  This approach means that all of the signal power can be used for 

acquisition of the signal.  In other words, this strategy offers equal power splitting 

between the data and a data-less portions of the signal.   

The data portion of L1C will carry a Navigation message known as CNAV-2 just like 

L2C.  Among other things this feature will allow the receiver to reach its first fix to the 

satellite faster.   The details of this Navigation message are not yet complete as other 

aspects of this signal. Also, as in L2C, L1C will likely incorporate FEC, Forward Error 

Correction. 

 The L1C provisional design also shares some design similarities with the M code, Binary 

Offset Carrier (BOC) modulation. L1C will use BOC (1, 1), and as with the M code it 

will have good separation from the other signals on L1 and a good tracking threshold as 

well.  Please recall that this also allows tracking with the superior phase-locked loop as 

opposed to the Costas loop. 
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(Ken Hudnut, Tom Stansell and Capt. Dom Alcocer “GPS L1C Design” CGSIC) 

Figure 10.7 

That is a very good thing because looking at the PSD in Figure 10. 7 there sure are 

getting to be a lot of signals on L1. Perhaps that has something to do with the fact that L1 

having the highest frequency experiences the least ionospheric delay of the carrier 

frequencies.  There is the C/A code, the P(Y) code, the M code and now perhaps the L1C 

code.  It is a challenge to introduce yet another code on the crowded L1 frequency and 

still maintain separability. 
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